Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(45): 18241-18249, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37947459

RESUMEN

In order to trap nanoparticles with dielectrophoresis, high electric field gradients are needed. Here we created large area (>mm2) conductive carbon nanofiber mats to trap nanoparticles with dielectrophoresis. The electrospun fiber mats had an average diameter of 267 ± 94 nm and a conductivity of 2.55 S cm-1. Relative to cleanroom procedures, this procedure is less expensive in creating bulk conductive nanoscale features. The electrospun fiber mat was used as one electrode, with an indium-tin-oxide glass slide serving as the other (separated approximately 150 µm). Numerical models showed that conductive nanoscale fibers can generate significant field gradients sufficient to overcome Brownian transport of nanoparticles. Our experiments trapped 20 nm fluorescent polystyrene beads at 7 Vrms and 1 kHz. Trapping is further enhanced through simultaneous electrohydrodynamic motion. Overall, this straightforward electrospun fiber mat can serve as a foundation for future use in microscale electrokinetic devices.

3.
Lab Chip ; 22(23): 4705-4716, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36349980

RESUMEN

We introduce a microfluidic impedance platform to electrically monitor in real-time, endothelium monolayers undergoing fluid shear stress. Our platform incorporates sensing electrodes (SEs) that measure cell behavior and cell-free control electrodes that measure cell culture media resistance simultaneously but independently from SEs. We evaluated three different cellular subpopulations sizes through 50, 100, and 200 µm diameter SEs. We tested their utility in measuring the response of human umbilical vein endothelial cells (HUVECs) at static, constant (17.6 dyne per cm2), and stepped (23.7-35-58.1 dyne per cm2) shear stress conditions. For 14 hours, we collected the impedance spectra (100 Hz-1 MHz) of sheared cells. Using equivalent circuit models, we extracted monolayer permeability (RTER), cell membrane capacitance, and cell culture media resistance. Platform evaluation concluded that: (1) 50 µm SEs (∼2 cells) suffered interfacial capacitance and reduced cell measurement sensitivity, (2) 100 µm SEs (∼6 cells) was limited to measuring cell behavior only and cannot measure cell culture media resistance, and (3) 200 µm SEs (∼20 cells) detected cell behavior with accurate prediction of cell culture media resistance. Platform-based shear stress studies indicated a shear magnitude dependent increase in RTER at the onset of acute flow. Consecutive stepped shear conditions did not alter RTER in the same magnitude after shear has been applied. Finally, endpoint staining of VE-cadherin on the actual SEs and endpoint RTER measurements were greater for 23.7-35-58.1 dyne per cm2 than 17.6 dyne per cm2 shear conditions.


Asunto(s)
Endotelio Vascular , Microfluídica , Humanos , Impedancia Eléctrica , Células Cultivadas , Estrés Mecánico , Células Endoteliales de la Vena Umbilical Humana
4.
Micromachines (Basel) ; 13(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35208412

RESUMEN

The electric curtain is a platform developed to lift and transport charged particles in air. Its premise is the manipulation of charged particles; however, fewer investigations isolate dielectric forces that are observed at lower voltages (i.e., less than the Paschen limit). This work focuses on observations of simultaneous dielectrophoretic and electrostatic forces. The electric curtain was a printed circuit board with interdigitated electrodes (0.020 inch width and spacing) coated with a layer of polypropylene, where a standing wave or travelling wave AC signal was applied (50 Hz) to produce an electric field below the Paschen limit. Soda lime glass beads (180-212 µm) demonstrated oscillatory rolling via dielectrophoretic forces. In addition, several particles simultaneously experienced rapid projectile repulsion, a behavior consistent with electrostatic phenomena. This second result is discussed as a particle-induced local increase in the electric field, with simulations demonstrating that a particle in close proximity to the curtain's surface produces a local field enhancement of over 2.5 times. The significance of this is that individual particles themselves can trigger electrostatic repulsion in an otherwise dielectric system. These results could be used for advanced applications where particles themselves provided triggered responses, perhaps for selective sorting of micrometer particles in air.

5.
Cardiovasc Eng Technol ; 13(4): 624-637, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35013917

RESUMEN

PURPOSE: Pediatric heart failure patients remain in critical need of a dedicated mechanical circulatory support (MCS) solution as development efforts for specific pediatric devices continue to fall behind those for the adult population. The Inspired Pediatric VAD is being developed as a pediatric specific MCS solution to provide up to 30-days of circulatory or respiratory support in a compact modular package that could allow for patient ambulation during treatment. METHODS: Hydrodynamic performance (flows, pressures), impeller/rotor mechanical properties (torques, forces), and flow shear stress and residence time distributions of the latest design version, Inspired Pediatric VAD V3, were numerically predicted and investigated using computational fluid dynamics (CFD) software (SolidWorks Flow Simulator). RESULTS: Hydrodynamic performance was numerically predicted, indicating no change in flow and pressure head compared to the previous device design (V2), while displaying increased impeller/rotor torques and translation forces enabled by improved geometry. Shear stress and flow residence time volumetric distributions are presented over a range of pump rotational speeds and flow rates. At the lowest pump operating point (3000 RPM, 0.50 L/min, 75 mmHg), 79% of the pump volume was in the shear stress range of 0-10 Pa with < 1% of the volume in the critical range of 150-1000 Pa for blood damage. At higher speed and flow (5000 RPM, 3.50 L/min, 176 mmHg), 65% of the volume resided in the 0-10 Pa range compared to 2.3% at 150-1000 Pa. CONCLUSIONS: The initial computational characterization of the Inspired Pediatric VAD V3 is encouraging and future work will include device prototype testing in a mock circulatory loop and acute large animal model.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Animales , Diseño de Equipo , Insuficiencia Cardíaca/terapia , Humanos , Hidrodinámica , Presión , Estrés Mecánico
6.
J Colloid Interface Sci ; 607(Pt 2): 1402-1410, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34587527

RESUMEN

HYPOTHESIS: Self-assembled colloidal mobility out of a non-equilibrium system can depend on many external and interparticle forces including hydrodynamic forces. While the driving forces guiding colloidal suspension, translation and self-assembly are different and unique, hydrodynamic forces are always present and can significantly influence particle motion. Unfortunately, these interparticle hydrodynamic interactions are typically overlooked. EXPERIMENTS: Here, we studied the collective behavior of colloidal particles (4.0 µm PMMA), located near the solid surface in a fluid medium confined in a cylindrical cell (3.0 mm diameter, 0.25 mm height) which was rotated vertically at a low rotational speed (20 rpm). The observed colloidal behavior was then validated through a Stokesian dynamics simulation where the concept of hydrodynamic contact force or lubrication interactions are avoided which is not physically intuitive and mathematically cumbersome. Rather, we adopted hard-sphere like colloidal collision or mobility model, while adopting other useful simplification and approximations. FINDINGS: Upon particles settling in a circular orbit, they hydrodynamically interact with each other and evolve in different structures depending on the pattern of gravity forces. Their agglomeration is a function of the applied rotation scheme, either forming colloidal clusters or lanes. While evolving into dynamic structures, colloids also laterally migrate away from the surface.


Asunto(s)
Coloides , Hidrodinámica , Fenómenos Mecánicos , Movimiento (Física)
7.
Cardiovasc Eng Technol ; 13(2): 307-317, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34518953

RESUMEN

PURPOSE: Despite the availability of first-generation extracorporeal mechanical circulatory support (MCS) systems that are widely used throughout the world, there is a need for the next generation of smaller, more portable devices (designed without cables and a minimal number of connectors) that can be used in all in-hospital and transport settings to support patients in heart failure. Moreover, a system that can be universally used for all indications for use including cardiopulmonary bypass (CPB), uni- or biventricular support (VAD), extracorporeal membrane oxygenation (ECMO) and respiratory assist that is suitable for use for adult, neonate, and pediatric patients is desirable. Providing a single, well designed, universal technology could reduce the incidence of human errors by limiting the need for training of hospital staff on a single system for a variety of indications throughout the hospital rather than having to train on multiple complex systems. The objective of this manuscript is to describe preliminary research to develop the first prototype pump for use as a ventricular assist device for pediatric patients with the Inspired Universal MCS technology. The Inspired VAD Universal System is an innovative extracorporeal blood pumping system utilizing novel MagLev technology in a single portable integrated motor/controller unit which can power a variety of different disposable pump modules intended for neonate, pediatric, and adult ventricular and respiratory assistance. METHODS: A prototype of the Inspired Pediatric VAD was constructed to determine the hemodynamic requirements for pediatric applications. The magnitude/range of hydraulic torque of the internal impeller was quantified. The hydrodynamic performance of the prototype pump was benchmarked using a static mock flow loop model containing a heated blood analogue solution to test the pump over a range of rotational speeds (500-6000 RPM), flow rates (0-3.5 L/min), and pressures (0 to ~ 420 mmHg). The device was initially powered by a shaft-driven DC motor in lieu of a full MagLev design, which was also used to calculate the fluid torque acting on the impeller. RESULTS: The pediatric VAD produced flows as high as 4.27 L/min against a pressure of 127 mmHg at 6000 RPM and the generated pressure and flow values fell within the desired design specifications. CONCLUSIONS: The empirically determined performance and torque values establish the requirements for the magnetically levitated motor design to be used in the Inspired Universal MagLev System. This next step in our research and development is to fabricate a fully integrated and functional magnetically levitated pump, motor and controller system that meets the product requirement specifications and achieves a state of readiness for acute ovine animal studies to verify safety and performance of the system.


Asunto(s)
Insuficiencia Cardíaca , Corazón Auxiliar , Animales , Niño , Diseño de Equipo , Insuficiencia Cardíaca/terapia , Hemodinámica , Humanos , Ovinos , Torque
8.
Colloid Interface Sci Commun ; 40: 100338, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34722169

RESUMEN

This manuscript describes the potentially significant role of interfacial tension in viral infection. Our hypothesis is based on evidence from drop coalescence hydrodynamics. A change in membrane tension can trigger fusion between the vesicle and cell such that genetic material, like viral RNA, can subsequently be transported to the cell interior. In other cases, RNA may reside near the cell membrane inside the cell, which could make their removal energetically unfavorable because of hydrodynamic interactions between membrane and RNA. Interfacial tension of the virus membrane can be modulated by temperature, among many other factors, of the mucosa layer. We discuss our hypothesis within the scope of recent SARS-CoV-2 studies where temperature-dependent membrane surface tension could be impacted through different atmospheric conditions, air conditioning systems, and the use of masks.

9.
Electrophoresis ; 42(23): 2483-2489, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34409621

RESUMEN

Trapping, sorting, transportation, and manipulation of synthetic microparticles and biological cells enable investigations in their behavior and properties. Microfluidic techniques like rapid electrokinetic patterning (REP) provide a non-invasive means to probe into the nature of these micro and nanoparticles. The opto-electrically induced nature of a REP micro vortex allows tuning of the trap characteristics in real-time. In this work, we studied the effects of transient optical heating on the induced electrothermal vortex using micro-particle image velocimetry (µ-PIV) and computational modeling. A near infra-red (980 nm) laser beam was focused on a colloidal suspension of 1 µm polystyrene beads sandwiched between two parallel-plate electrodes. The electrodes were subjected to an AC current. The laser spot was scanned back-and-forth in a line, at different frequencies, to create the transient vortex. This phenomenon was also studied with a computational model made using COMSOL Multiphysics. We visualize fluid flow in custom-shaped REP traps by superposing multiple axisymmetric (spot) vortices and discuss the limitations of using superposition in dynamically changing traps.


Asunto(s)
Microfluídica , Simulación por Computador , Electrodos , Técnicas Analíticas Microfluídicas , Reología
10.
Biosens Bioelectron ; 171: 112709, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075724

RESUMEN

Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was classified as a pandemic by the World Health Organization and has caused over 550,000 deaths worldwide as of July 2020. Accurate and scalable point-of-care devices would increase screening, diagnosis, and monitoring of COVID-19 patients. Here, we demonstrate rapid label-free electrochemical detection of SARS-CoV-2 antibodies using a commercially available impedance sensing platform. A 16-well plate containing sensing electrodes was pre-coated with receptor binding domain (RBD) of SARS-CoV-2 spike protein, and subsequently tested with samples of anti-SARS-CoV-2 monoclonal antibody CR3022 (0.1 µg/ml, 1.0 µg/ml, 10 µg/ml). Subsequent blinded testing was performed on six serum specimens taken from COVID-19 and non-COVID-19 patients (1:100 dilution factor). The platform was able to differentiate spikes in impedance measurements from a negative control (1% milk solution) for all CR3022 samples. Further, successful differentiation and detection of all positive clinical samples from negative control was achieved. Measured impedance values were consistent when compared to standard ELISA test results showing a strong correlation between them (R2=0.9). Detection occurs in less than five minutes and the well-based platform provides a simplified and familiar testing interface that can be readily adaptable for use in clinical settings.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Técnicas Biosensibles/instrumentación , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/sangre , Espectroscopía Dieléctrica/instrumentación , Neumonía Viral/sangre , Anticuerpos Antivirales/inmunología , Técnicas Biosensibles/economía , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/economía , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/economía , Infecciones por Coronavirus/inmunología , Espectroscopía Dieléctrica/economía , Impedancia Eléctrica , Diseño de Equipo , Humanos , Proteínas Inmovilizadas/inmunología , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/inmunología , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo
11.
Anal Bioanal Chem ; 412(16): 3813-3833, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32296904

RESUMEN

Isomotive dielectrophoresis (isoDEP) is a unique electric field such that the gradient of the field-squared ([Formula: see text]) is constant, resulting a uniform dielectrophoretic force. The current status of isoDEP is presented in this review, and we will highlight the progress that has been achieved over the past 60 years in various avenues of isoDEP since H.A. Pohl initially described its premise. This article will discuss its applications and describe the various configurations of generating an isomotive force. Since H.A. Pohl introduced the theory of isoDEP, numerous authors have implemented isoDEP as a tool for the manipulation, sorting, separation, and characterization of polarizable particles without the need for biochemical labels or other bioengineered tagging. The growing field of microfluidics and electrokinetics has renewed interest in isoDEP, particularly for analytical characterization or separation of particles. Recent work has demonstrated that isoDEP can address some unmet needs for biomedical applications including single-cell analysis; moreover, advances in throughput as well as combining characterization and separation simultaneously will add significant value to isoDEP.


Asunto(s)
Separación Celular/métodos , Electroforesis/métodos , Diseño de Equipo
12.
ACS Nano ; 14(5): 5417-5425, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32208622

RESUMEN

When a sessile droplet of a complex mixture evaporates, its nonvolatile components may deposit into various patterns. One such phenomena, the coffee ring effect, has been a topic of interest for several decades. Here, we identify what we believe to be a fascinating phenomenon of droplet pattern deposition for another well-known beverage-what we have termed a "whiskey web". Nanoscale agglomerates were generated in diluted American whiskeys (20-25% alcohol by volume), which later stratified as microwebs on the liquid-air interface during evaporation. The web's strandlike features result from monolayer collapse, and the resulting pattern is a function of the intrinsic molecular constituents of the whiskey. Data suggest that, for our conditions (diluted 1.0 µL drops evaporated on cleaned glass substrates), whiskey webs were unique to diluted American whiskey; however, similar structures were generated with other whiskeys under different conditions. Further, each product forms their own distinct pattern, demonstrating that this phenomenon could be used for sample analysis and counterfeit identification.

13.
Electrophoresis ; 41(1-2): 148-155, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31677287

RESUMEN

Isomotive dielectrophoresis (isoDEP) is a unique DEP geometrical configuration where the gradient of the field-squared ( ∇Erms2 ) is constant. IsoDEP analyzes polarizable particles based on their magnitude and direction of translation. Particle translation is a function of the polarizability of both the particles and suspending medium, the particles' size and shape, and the frequency of the electric field. However, other electrokinetics act on the particles simultaneously, including electrothermal hydrodynamics. Hence, to maximize the DEP force relative to over electrokinetic forces, design parameters such as microchannel geometry, fabrication materials, and applied electric field must be properly tuned. In this work, scaling law analyses were developed to derive design rules, relative to particle diameter, to reduce unwanted electrothermal hydrodynamics relative to DEP-induced particle translation. For a particle suspended in 10 mS/m media, if the channel width and height are below ten particle diameters, the electrothermal-driven flow is reduced by ∼500 times compared to a channel that is 250 particles diameters in width and height. Replacing glass with silicon as the device's underlying substrate for an insulative-based isoDEP reduces the electrothermal induced flow approximately 20 times less.


Asunto(s)
Electroforesis/instrumentación , Hidrodinámica , Técnicas Analíticas Microfluídicas/instrumentación , Termodinámica , Diseño de Equipo , Microelectrodos , Silicio/química
14.
Biomicrofluidics ; 13(6): 064113, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31768199

RESUMEN

Late embryogenesis abundant (LEA) proteins are found in desiccation-tolerant species from all domains of life. Despite several decades of investigation, the molecular mechanisms by which LEA proteins confer desiccation tolerance are still unclear. In this study, dielectrophoresis (DEP) was used to determine the electrical properties of Drosophila melanogaster (Kc167) cells ectopically expressing LEA proteins from the anhydrobiotic brine shrimp, Artemia franciscana. Dielectrophoresis-based characterization data demonstrate that the expression of two different LEA proteins, AfrLEA3m and AfrLEA6, increases cytoplasmic conductivity of Kc167 cells to a similar extent above control values. The impact on cytoplasmic conductivity was surprising, given that the concentration of cytoplasmic ions is much higher than the concentrations of ectopically expressed proteins. The DEP data also supported previously reported data suggesting that AfrLEA3m can interact directly with membranes during water stress. This hypothesis was strengthened using scanning electron microscopy, where cells expressing AfrLEA3m were found to retain more circular morphology during desiccation, while control cells exhibited a larger variety of shapes in the desiccated state. These data demonstrate that DEP can be a powerful tool to investigate the role of LEA proteins in desiccation tolerance and may allow to characterize protein-membrane interactions in vivo, when direct observations are challenging.

15.
Electrophoresis ; 38(11): 1441-1449, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28112416

RESUMEN

Two dielectrophoresis systems are introduced where the induced dielectrophoretic force is constant throughout the experimental region, resulting in uniform (isomotive) microparticle translation. Isomotive dielectrophoresis (isoDEP) is accomplished through a unique geometry where the gradient of the field-squared (∇Erms2) is constant, a characteristic that is otherwise highly nonuniform in traditional DEP platforms. The governing isoDEP equations were derived herein and applied to two different isoDEP prototypes: (i) one fabricated from deep reactive ion etching (DRIE) of a conductive silicon wafer (1-10 Ω-cm) whose patterned features served as electrodes and microchannel sidewalls simultaneously; (ii) a second where the electric field is applied lengthwise through a PDMS microchannel whose geometry follows a specific curvature. Both positive and negative dielectrophoresis was demonstrated with the isoDEP devices using silver-coated hollow glass spheres and polystyrene particles, respectively. Particle tracking was used to compare particle trajectory with the expected dielectrophoretic response; further, particle velocity was used to measure the Clausius-Mossotti factor of individual polystyrene particles (18-24.9 µm) in both devices with a value of -0.40 ± 0.063 (n = 110) and -0.48 ± 0.055 (n = 18) for the DRIE and PDMS isoDEP platforms, respectively. The isoDEP platform is capable of analyzing multiple particles simultaneously, providing greater throughput than traditional electrorotation platforms.


Asunto(s)
Simulación por Computador , Electroforesis por Microchip , Diseño de Equipo , Electroósmosis , Electroforesis por Microchip/instrumentación , Electroforesis por Microchip/métodos , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Microelectrodos , Modelos Teóricos , Tamaño de la Partícula , Poliestirenos
16.
Electrophoresis ; 37(4): 658-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26613811

RESUMEN

Rapid electrokinetic patterning (REP) is an emerging optoelectric technique that takes advantage of laser-induced AC electrothermal flow and particle-electrode interactions to trap and translate particles. The electrothermal flow in REP is driven by the temperature rise induced by the laser absorption in the thin electrode layer. In previous REP applications 350-700 nm indium tin oxide (ITO) layers have been used as electrodes. In this study, we show that ITO is an inefficient electrode choice as more than 92% of the irradiated laser on the ITO electrodes is transmitted without absorption. Using theoretical, computational, and experimental approaches, we demonstrate that for a given laser power the temperature rise is controlled by both the electrode material and its thickness. A 25-nm thick Ti electrode creates an electrothermal flow of the same speed as a 700-nm thick ITO electrode while requiring only 14% of the laser power used by ITO. These results represent an important step in the design of low-cost portable REP systems by lowering the material cost and power consumption of the system.


Asunto(s)
Técnicas Electroquímicas/métodos , Micromanipulación/métodos , Modelos Teóricos , Imagen Óptica/métodos , Electrodos
17.
Biotechnol Bioeng ; 113(6): 1336-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26615057

RESUMEN

Electrical impedance techniques have been used to characterize endothelium morphology, permeability, and motility in vitro. However, these impedance platforms have been limited to either static endothelium studies and/or induced laminar fluid flow at a constant, single shear stress value. In this work, we present a microfabricated impedance sensor for real-time, in vitro characterization of human umbilical vein endothelial cells (HUVECs) undergoing oscillatory hydrodynamic shear. Oscillatory shear was applied with an orbital shaker and the electrical impedance was measured by a microfabricated impedance chip with discrete electrodes positioned at radial locations of 0, 2.5, 5.0, 7.5, 10.0, and 12.5 mm from the center of the chip. Depending on their radial position within the circular orbital platform, HUVECs were exposed to shear values ranging between 0.6 and 6.71 dyne/cm(2) (according to numerical simulations) for 22 h. Impedance spectra were fit to an equivalent circuit model and the trans-endothelial resistance and monolayer's capacitance were extracted. Results demonstrated that, compared to measurements acquired before the onset of shear, cells at the center of the platform that experienced low steady shear stress (∼2.2 dyne/cm(2) ) had an average change in trans-endothelial resistance of 6.99 ± 4.06% and 1.78 ± 2.40% change in cell capacitance after 22 hours of shear exposure; cells near the periphery of the well (r = 12.5 mm) experienced transient shears (2.5-6.7 dyne/cm(2) ) and exhibited a greater change in trans-endothelial resistance (24.2 ± 10.8%) and cell capacitance (4.57 ± 5.39%). This study, demonstrates that the orbital shear platform provides a simple system that can capture and quantify the real-time cellular morphology as a result of induced shear stress. The orbital shear platform presented in this work, compared to traditional laminar platforms, subjects cells to more physiologically relevant oscillatory shear as well as exposes the sample to several shear values simultaneously. Biotechnol. Bioeng. 2016;113: 1336-1344. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Células Endoteliales/fisiología , Sistemas Microelectromecánicos/instrumentación , Estimulación Física/instrumentación , Pletismografía de Impedancia/instrumentación , Reología/instrumentación , Resistencia al Corte/fisiología , Separación Celular/instrumentación , Células Cultivadas , Sistemas de Computación , Células Endoteliales/citología , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Hidrodinámica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Vibración
18.
Microsyst Nanoeng ; 2: 16005, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31057816

RESUMEN

In the path toward the realization of carbon nanotube (CNT)-driven electronics and sensors, the ability to precisely position CNTs at well-defined locations remains a significant roadblock. Highly complex CNT-based bottom-up structures can be synthesized if there is a method to accurately trap and place these nanotubes. In this study, we demonstrate that the rapid electrokinetic patterning (REP) technique can accomplish these tasks. By using laser-induced alternating current (AC) electrothermal flow and particle-electrode forces, REP can collect and maneuver a wide range of vertically aligned multiwalled CNTs (from a single nanotube to over 100 nanotubes) on an electrode surface. In addition, these trapped nanotubes can be electrophoretically deposited at any desired location onto the electrode surface. Apart from active control of the position of these deposited nanotubes, the number of CNTs in a REP trap can also be dynamically tuned by changing the AC frequency or by adjusting the concentration of the dispersed nanotubes. On the basis of a calculation of the stiffness of the REP trap, we found an upper limit of the manipulation speed, beyond which CNTs fall out of the REP trap. This peak manipulation speed is found to be dependent on the electrothermal flow velocity, which can be varied by changing the strength of the AC electric field.

19.
Electrophoresis ; 36(15): 1681-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26010255

RESUMEN

Interdigitated electrodes are used in electrokinetic lab-on-a-chip devices for dielectrophoretic trapping and characterization of suspended particles, as well as the production of field-induced fluid flow via AC electroosomosis and electrothermal mechanisms. However, the optimum design for dielectrophoresis, that if symmetrical electrodes, cannot induce bulk electrohydrodynamic pumping. In addition, the mechanism of intrinsic electrothermal pumping is affected by the properties of the fluid, with thermal fields being generated by Joule Heating. This work demonstrates the incorporation of an underlying thin film heater, electrically isolated from the interdigitated electrodes by an insulator layer, to enhance bulk electrothermal pumping. The use of integrated heaters allows the thermal field generation to be controlled independently of the electric field. Numerical simulations are performed to demonstrate the importance of geometrical arrangement of the heater with respect to the interdigitated electrodes, as well as electrode size, spacing, and arrangement. The optimization of such a system is a careful balance between electrokinetics, heat transfer, and fluid dynamics. The heater location and electrode spacing influence the rate of electrothermal pumping significantly more than electrode width and insulator layer thickness. This demonstration will aid in the development of microfluidic electrokinetic systems that want to utilize the advantages associated with electrothermal pumping while simultaneously applying other lab-on-a-chip electrokinetics like dielectrophoresis.


Asunto(s)
Electroforesis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Teóricos , Electrodos , Diseño de Equipo , Termodinámica
20.
Electrophoresis ; 36(15): 1674-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26013358

RESUMEN

Rapid electrokinetic patterning (REP) is a technique for creating self-assembled monolayers (SAMs) of spherical particles in a liquid medium, and dynamically controlling them though the simultaneous application of an electric field and optically induced temperature gradients. Previous work has investigated and characterized REP axisymmetric aggregations generated from a focus laser within a uniform electric field; work herein characterizes line-shaped particle assemblies derived from the application of a linearly scanned laser. The resulting aggregations of spherical polystyrene particles (1 µm) suspended in low-conductivity aqueous potassium chloride solution (KCl, 2.5 mS/m) resembled elliptical-shaped crystalline geometries. The mean particle-to-particle spacing within the aggregation remained greater than 1.5 diameters for experiments herein (6.5 Vrms , 30 kHz) due to dipole-dipole repulsive forces. Interparticle spacing demonstrated a linear relationship (1.6-2.1 µm) with increasing scanning lengths (up to 83 µm), decreased from 1.9 to 1.7 µm with increasing scanning frequency (0.38-16 Hz) for a 53 µm scan length, and decreased from 2.0 to 1.6 µm with increasing laser power (11.9-18.8 mW) for a 59 µm, 16 Hz laser scan.


Asunto(s)
Coloides/química , Microfluídica/métodos , Procesamiento de Imagen Asistido por Computador , Microesferas , Poliestirenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...